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Abstract: - Node Localization in Wireless Sensor Networks (WSNs) is widely used in many applications. 
Localization uses particle filter that provides higher network traffic due to continuous updates, which leads to 
high power consumption. The article presents a range-based localization for Mobile Nodes (MN) that builds up 
on Hidden Markov Model (HMM) algorithm. The proposed work is based on MN and the state is hidden in the 
Received Signal Strength (RSS) for outdoor applications. Hidden states uses explicit knowledge of the 
observation probability obtained from two-ray ground propagation model. HMM correlates these observations 
to predict the hidden states. The state transition and the observation of HMM help to estimate the most probable 
state sequence and the last state obtained is the predicted location. This work uses various mobility models for 
the movement of nodes. Varying the transmission range effectively controls the network connectivity. Results 
from simulation study have revealed the possible reduction of network traffic and power consumption with less 
estimation error. In addition, this work provides an efficient confidence interval for the estimation error. 
 
Key-Words: - Estimation Error, Hidden Markov Model, Localization, Mobile Nodes, Received Signal Strength, 
State Estimation, Wireless   Sensor Networks. 
 
1 Introduction 
Sensor networks are significantly different from 
traditional ad hoc networks. In general, sensor nodes 
are densely deployed, prone to failures and limited 
in power provision, computational complexity and 
memory when compared to ad hoc nodes. While 
most ad hoc networks communicate on a point-to-
point basis, sensor nodes mainly use a broadcast 
communication paradigm [1]. In particular, 
location-based applications of WSNs are employed 
for locating people and tracking mobile objects in 
large buildings (e.g., warehouses, hospitals) using 
GPS. However, very few studies have indicated the 
use of WSN in outdoor environments to track 
people in wide outdoor areas, such as enemies in the 
battlefield. 
The geographic location of nodes in a sensor 
network is determined   for many features of system 
operation such as data stamping, tracking, signal 
processing, querying, topology control, clustering, 
and routing [2]. The selection of a suitable 
algorithm for a given application and its 
performance depends on several key factors such as 
the information available about known locations, 
difficulty in locating a cooperative node, the 
dynamics of change of location, the desired 
accuracy, and the constraints placed on hardware.  
The estimated position of each MN (non-anchor 
node) can be computed by communicating with the 
static node (anchor node). The position of the node 

is obtained using only radio signals (RSS, an index 
of the received signal power). In reality, the nodes 
of the static network should be power-efficient 
when they are battery-operated, healthy to packet 
drop, easy to track in actual time, and finally, it 
should tolerate suitable localization accuracy even 
in the case of some static node failure.  
The particle filter [3] solves the outdoor localization 
problem that incorporates multiple sensory data 
using both static and mobile multihop network. The 
node moves with random velocity attracts normal 
distribution and noise model are the particle filter 
assumptions to compare the results from RSS and 
Angle of Arrival (AOA, an estimate of the relative 
angles between nodes) sensor types. The simulation 
study and analysis reveal that an AOA sensor does 
not work when the network connectivity is low. The 
network containing 50 % of AOA and RSS sensors 
than the network dominated by individual-type 
sensors achieves better localization. Continuous 
updating at sufficient frequency to keep up with the 
node movement results in network traffic that 
consumes high power; this is a constraint in particle 
filter. 
The current study proposes a network-based 
localization system, which is modeled as HMM, and 
the unobserved (hidden) state sequence in the RSS 
has been used to estimate MN location. The hidden 
markov state uses RSS and the MN location 
sequence to estimates the most likelihood 
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probability and the last state attained is the 
estimated location. The original contributions 
provided in this paper are the capability to model 
and handle the range-based RSS through two-ray 
ground propagation [4],  node movement follows 
the random pattern of mobility model such as 
Random Walk Model (RWM), Random Waypoint 
Model (RWP), and  Reference Point Group Mobility 
model (RPGM) [5] perceives less estimation error. 
The proposed model emphasizes on outdoor 
localization using HMM and the MN location is 
estimated using the observation probability, which 
helps to minimize the traffic that consumes less 
power for the localization process. 
The rest of the paper is organized as follows: section 
2 summarizes the Existing localization methods and 
Motivation; the proposed model for localization is 
given in section 3, and the performance evaluation 
is discussed in section 4. Section 5 concludes the 
paper and discusses on the future work. 
 
 
2 Existing Localization Methods and 
Motivation 
Sequential Monte Carlo Localization (SMCL) is 
suitable for sensor networks, but it needs to address 
how the mobility model affects the localization 
accuracy [6]. In Improved MCL (IMCL), anchor 
constraint, neighbour constraint and moving 
direction constraint are proposed [7] to confine the 
region of the valid samples near the actual position 
of the normal nodes to improve the localization 
accuracy. Improving MCL uses Genetic Algorithm, 
which reduces the precision of the localization 
accuracy [8 ]. 
In the case of indoor localization, Bayesian Filtering 
[9] has used RSS to estimate the location on sample 
sets derived by Monte Carlo Sampling. The static 
path-planning problem of mobile beacon to localize 
sensors for uniformly deployed network approach is 
considered in [10]. The localization procedure needs 
to adjust the path for dynamic path planning. The 
approach for localization by using single mobile 
beacon is dealt [11], but inter-sensor localization 
methods can be used after the mobile beacon exits 
the deployment area. A Fade-skew-level Laplace 
signal strength statistical model applying particle 
filter is used to estimate the location [12] of moving 
and stationary people for wireless networks. RSS 
based sensor localization using unscented 
Transformation is dealt [13] for both cooperative 
and non-cooperative scenarios. 

Incorporating multiple sensory data in both static 
and mobile multihop networks solves the 
localization problem using particle filter [3]. The 
limitations are that the continuous updating of the 
filter increases network traffic and high power 
consumption. The model could be improved by 
learning movement pattern (HMM) for mobile 
networks. 
HMM is used in speech recognition [14], and directs 
the technique to be applied to more advanced speech 
recognition problems. For indoor environment, 
HMM method improves the accuracy of localization 
[15]  with respect to conventional ranging methods, 
especially in mixed LOS/NLOS conditions for all 
radio links. HMM is used as a cascade model [16] 
for finding correlations among sensory inputs to 
learn a set of symbolic concepts for mobile robot. 
Multiuser decision feedback [17] uses HMM in 
which a linear filter based on the maximum target 
likelihood criterion is derived to remove the 
interferences. The Bayes Particle filter framework 
was compared with Hidden Markov Model [18] 
using Semi Markov smooth mobility model and it is 
seen that the localization accuracy was improved for 
HMM. 
Though various techniques have been proposed for 
localization, HMMs are the learning movement 
models that incorporate a notion of time directly 
into the model through an underlying markov chain. 
The HMM is proposed to locate the nodes by 
improving the location accuracy using various 
mobility models for the node movement. 
 
2.1 Motivation 
WSN localization targets to find the physical 
location of all nodes deployed in the region. The 
objective of the localization algorithm is to find the 
location of non-anchor nodes with the help of 
anchor nodes.  
Particle filtering is a technique for executing 
recursive Bayesian filtering by Monte Carlo 
sampling. Particle filters allow Bayesian estimation 
to be carried out approximately in a structured and 
iterative manner. The estimated position on the 
nodes is represented by a probability distribution. 
Bayes Particle filtering framework can be used for 
both static and mobile nodes in sensor network 
localization [3]. The node movement drawn from 
random velocity follows normal distribution where 
RSSI uses free-space propagation model and the 
measured AOA is affected by the noise model. The 
particle filters are updated continuously at sufficient 
frequency leading to increase in network traffic and 
high power consumption. 
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This framework addresses the localization for mixed 
type of sensory capacities, rather than permitting 
individual RSSI or AOA sensor type. As 
recommended, this model could be improved by 
learning the movement patterns (models) for mobile 
networks. By using RSS sensor type in HMM, the 
location is estimated using the state sequence hidden 
in the signal strength based on the observation 
probability.  
 
3 Proposed Model for Localization  
WSN localization is a basic need for many 
applications. Node localization could involve 
tracking a single node moving across the plane or 
trying to identify the location of a fixed node. The 
proposed model assumes that the anchor nodes are 
static while the non-anchor nodes are moving 
dynamically over the network. The goal is to 
estimate the locations of the MN with the help of 
HMM and the following sections discusses about 
this method. 

 
3.1 Gathering RSS values of non-anchor 

nodes  
Limited number of anchor nodes use RSS capacity 
to achieve node localization. To predict the received 
signal power of each MN node, node localization 
uses two-ray-ground propagation model. With the 
support of anchor node, the RSS of the MN is 
collected with the nodeID. Because of the 
continuous movement of the node, the non-anchor 
node has many RSS values.  

 
3.2 Location Estimation Using HMM 
The proposed method locates the randomly scattered 
non-anchor nodes (MN) in the outdoor environment 
with the help of anchor nodes. The area of grid cell 
size n × n for node movement follows the pattern of 
mobility models to move from one grid to another. 
The server or base station estimates the location of 
non-anchor nodes. To estimate HMM parameters, 
each state represents a location in the discrete 
physical observation and an observation from a state 
represents an RSS reading from associated non-
anchor node [19]. During the operational stage, RSS 
interpretation from each non-anchor node and the 
HMM parameters are the necessary input to 
estimate the most probable sequence of states that 
results in the estimated location.  
3.2.1 Estimation of Probability Matrix in HMM  
HMMs extend markov models by assuming that the 
states of the markov chain are not observed directly. 
Hence, this model shows how the states (positions) 
relate to the actual observations (localizations). 

HMM can be used for localization process because 
it can model sequential stochastic processes or 
states, where probability of a state depends on 
previous states. 
An HMM can be represented as λ = (R,S,A,B,π) 
where: 

R = {R1,R2,R3,…,RN} is the set of possible 
states,each state represents a grid location in the 
physical space. 

S = {S1,S2,S3,…,SM} is the set of observations 
from the model,each observation is an ordered pair 
of (non-anchor nodeID,RSS). 

A = {aij} is the state transition probability 
matrix,where aij = P[qt+1 = Sj|qt=Si], 1≤ i, j ≤ N 
and qt is the state at time t. 

B = {bj(k)}is the observation symbol probability 
distribution in state j, where bj(k) = P[Sk at t|qt 
=Rj], 1≤ j≤ N, 1≤ k ≤ M and Sk are the output 
symbols  at time t. 

π = { π i} is the initial distribution, where π i = 
P[q1 = Ri]. 
Therefore, the problem in brief: With  a given  
sequence of observations O = (O1,…,OT), where T 
is a system parameter and each Oi ϵ S, 1 ≤ i ≤ T, 
the most probable sequence of location (states) Q = 
(q1,…,qt), where each qi ϵ R, 1 ≤ i  ≤ T must be  
found.  
The purpose is to build the HMM and estimate its 
parameters for the localization. The state transition 
matrix is obtained by the random node movement 
either in forward, backward, upward or downward 
direction and each state represents a location in the 
grid. The node existence is identified by its 
transition probability of signal strength. The 
transition sequence length parameter is assumed to 
be ‘N’. The transition probability matrix is denoted 
by An  for the nth node and it is of the form 

An = 
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Further, the observation matrix (B) is attained by the 
location of anchor node to estimate the observation 
probability inside the cell. The anchor nodes direct 
the beacon messages and based on the response of 
RSS of the MN, B can be obtained. The observation 
sequence length parameter is assumed to be ‘M’. 
The observation probability matrix is denoted by Bn  
for the nth node and it is shown in (2) 
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Bn = 





















)()(
2

)(
1

)(
2

)(
22

)(
21

)(
1

)(
12

)(
11

..
....

..

..

n
NM

n
N

n
N

n
M

nn

n
M

nn

bbb

bbb
bbb

                         (2) 

Algorithm 1 is developed for iteratively computing 
Bn. 

Algorithm 1 Observation matrix 
• Input: Set the location of the transmitter co-

ordinate Tx, Ty for each anchor node in the grid 
cell. 

• Output: Generate the observation probability 
matrix for each non-anchor node from the known 
anchor node location coordinates in the grid cell. 
1.  Declare the variables for the states as i, j, 

k=1.   
2. Set  the constants Gt, Gr, ht, hr, Pt, π, λ 
3. Initialize an array of grid cell  size NxM  for 

the observation matrix B[i][j] 
4. begin 
5. Divide the grid into smaller cells to   observe 

the movement of nodes 
6. for i varying from 1 to N sequence length  do 
7. for j varying from 1 to M sequence length  do 
8. for (RY = (i-1)*100; RY < i * 100; RY = RY 

+0.1) i.e., receiver Y co-ordinate  do 
9. for (RX = (j-1)*100; RX < j * 100; RX = RX + 

0.1) i.e., receiver X co-ordinate do 
10.    Compute  the distance  d = sqrt ((RX - TX ) 

* (RX - TX ) + (RY - TY) * (RY - TY )); 
11.    Compute  crossover_dist = (4 * π * ht * hr  

) / λ; 
12.           if (d <= crossover_dist),then 
13.            J = λ / (4 * π * d);  
14.               Pr = (Pt * Gt * Gr * (J * J)) / L;  
15.           else 
16.              Pr = Pt * Gt * Gr * (hr * hr * ht * ht)         

/ (d * d * d * d * L);  
17.     endif 
18.           rssi = 10*log 10(Pr ); 
19.           rs = (int) rssi ; 
20.          B[k] [rs] + = 1; 
21.    end for  
22.    end for  
23. Increment  k by 1; 
24. end for  
25. end for  
26. Find sum of each row in observation matrix 
27. Divide each element in observation  matrix 

with its respective sum 
28. Generate the observation probability matrix  

B[i][j] 

Once these factors are clearly understood, the 
system is ready to find the location estimate of the 
non-anchor node.  

 
3.2.2 Evaluating the Sequence using Forward-
Backward Algorithm  
The main approach is to estimate the location of the 
MN using RSS values. The observation 
sequence  is considered to find 
the location where the non-anchor node exists at the 
end of the state sequence. The sequence evaluation 
is obtained by the probability of the observation , 
given the model λ, i.e. to find .The 
forward or backward algorithm is used to evaluate 
the sequence for location estimate [14]. 
The forward probability calculation is based on the 
grid cell, considering there are only N states (node 
location at each time in the grid), all possible state 
sequences will merge into those node locations, no 
matter how long the observation sequence. The 
initial forward variable is defined as 

 where  is the 
probability of observing the partial 
sequence ) such that the state  is i. At 
times, there is a need to calculate values of forward 
variable, where each calculation involves only N 
previous values. The effect in forward and backward 
procedures is almost identical. The result P (O/λ) is 
mainly used for training the model. 
 
3.2.3 Estimating the sequence using Viterbi 
Algorithm  
Given the observation , the most likely state 
sequence is obtained using the decoding problem by 
Viterbi algorithm [14]. This algorithm involves 
initialization, recursion and termination. The Viterbi 
algorithm creates a better trajectory than the 
traditional algorithm because it decides the real state 
that depends on all states and the final one is the 
most likelihood state. The observation sequence will 
keep on varying based on the known anchor node 
location. The focus is to compute the most probable 
state sequence , hence the Viterbi 
decoding algorithm is used to find the state 
sequence with the help of observation probability. 
The state sequence for each node is found and the 
last state estimated, i.e. qt is returned as the 
estimated user location. By increasing the 
observation sequence length that adds more states, 
the location estimation attains high accuracy. As the 
localization process proceeds, each non-anchor node 
location is estimated and converges faster to a more 
concentrated location estimate. 
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The HMM Model uses the location information 
from the anchors, which is implicitly contained in 
the observed state sequence estimation for each 
unknown non-anchor node. The advantage of our 
model is that it uses the sequence of states to find 
the estimate location that does not require 
continuous sampling and updates as required by the 
particle filter framework.  
 
4 Performance Evaluation 
The performance of Bayes Particle Filter and 
proposed HMM model with RWM, RWP and 
RPGM model have been evaluated using NS2 
simulation. Location estimation error, Control 
overhead and Average energy dissipation are 
considered [20] as the key metric for evaluating 
localization schemes. 

(i) Location Estimation Error: It is the average 
distance between estimated location and actual 
location of all sensor nodes. The location error is 
scaled as the percentage of transmission range. 

(ii) Control Overhead: It is the total number of 
control packets transmitted by the anchors to 
localize an unknown node in each localization 
process. 

(iii) Average Energy Dissipation: It is the 
average amount of energy spent by a sensor node 
during communication in the network. 

Table 1: Simulation Parameters 

Simulation area                 1000m X 1000m 

Antenna Type                    Omni Directional 

Propagation Model            Two-ray ground 

Traffic Type                       CBR 

Speed    2 – 10 m/sec 

Initial Energy                     5.1 J 

Packet size                         512 bytes 

Pause Time                        5 sec 

Mobility Model                  RWM, RWP, RPGM 
 
Table 1 shows the simulation parameters. The 
performance metrics are analysed for validating the 
algorithm by varying the node density, transmission 
range and speed. 10% of the total nodes are assumed 
as anchor nodes [3] and the network area is 

deployed with 100 nodes. The particle filter has 
total number of 200 particles at each node. The 
transmission range is set to 150m that leads to a 
coverage of 100%. The transition sequence length 
parameter N is fixed at 100 and the observation 
sequence length parameter M is fixed at 119. 

 
4.1  Simulation Results and Analysis 
The simulation results for the proposed HMM are 
analyzed to study the effect of node variation, 
varying transmission ranges for connectivity and 
various speeds. 

 
4.1.1 Effect of varying the number of nodes 
The evaluations on estimation error or localization 
accuracy over number of nodes are analyzed for the 
proposed method. Increase in the number of nodes 
improves the localization accuracy for different 
mobility models as shown in Fig 1 (a)–(c).  

(a) 

(b) 

As expected, higher node density lowers the 
estimation error. The error estimate of HMM RPGM 
proves to be better because each node moves near 
the other as a group with almost similar speed and 
direction. 
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(c)  
Fig 1:  Impact of Node density on Estimation Error 

(a) RWM (b)  RWP (c)  RPGM 
 
However, in comparison with other mobility 
models, it has lowest relative speed because each 
node in a group chooses a random speed and 
direction according to the group leader. This 
specifies that for the proposed work, nodes with 
RSS tend to adapt mobility and converge faster 
when compared with particle filter. 
The performance of control overhead over node 
density is shown in Fig 2 (a)–(c). The anchor node 
transmits a packet within its range to gather 
information from the neighbouring node that 
increases control overhead. Non-anchor nodes 
overhearing this packet reply their known 
information to anchor node. 

(a) 

The simulation endorses that HMM takes 10% less 
compared to existing method because of the state 
sequence rather than continuous updating of filters. 

(b) 

(c) 

Fig 2:  Impact of Node density on Control Overhead 
(a) RWM (b)  RWP (c)  RPGM 

 
Overall, the mobility model behaves as per the 
functionality of the model, taking more overhead 
increases nodes density. 
The effectiveness of average energy dissipated with 
respect to total number of nodes is shown in Fig 3 
(a)–(c). The average energy spent when in 
movement is more, but actual energy spent in 
localization process is less. This shows that energy 
consumption varies due to increase in the node 
density. It is observed that for different mobility 
model, average energy dissipation gradually 
decreases for larger density of nodes. The existing 
method in the RPGM model consumes more energy 
due to the particle size that requires continuous 
updating of the filter. 
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(a) 

 
(b) 

 
(c) 

Fig 3:  Impact of Node density on Average Energy 
Dissipation 

(a) RWM (b)  RWP (c)  RPGM 
 

4.1.2 Effect of  the coverage 
The impact of estimation error against coverage to a 
transmission range of 150m for 100 nodes with the 
speed of 10m/s is shown in Fig  4 (a)–(c). The effect 
of coverage becomes low when the network is 
dense, i.e., increase in transmission range. The 
estimation error increases due to increase in the 
transmission range for higher node density. The 
network connectivity is efficiently controlled by 
varying the transmission range. The anchors 

eventually propagate throughout the network of 
varying transmission ranges and allow non-anchor 
nodes to localize themselves using the state 
sequence estimation provided by HMM. The 
estimation error for HMM RPGM appears to be 
better when compared with other mobility models. 
 

 

(a) 

(b)

(c) 

Fig 4: Impact of Coverage on Estimation Error 
(a) RWM (b) RWP (c) RPGM 

The control overhead packets differ as shown in Fig 
5 (a)–(c) with increase in transmission range for 
varying mobility models. The control overhead 
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packet gradually decreases for increasing 
transmission range for higher nodes. As anticipated, 
the estimated locations become more accurate as 
more information is exchanged among neighbors. 
The overhead packets are decreased to increase the 
node density for 80 to 100% of coverage. RPGM 
consumes more overhead packets when compared to 
the other mobility model because the member nodes 
follow the leader node. 

 

(a) 

(b)

(c) 

Fig 5: Impact of Coverage on Control Overhead 
(a) RWM (b)  RWP (c)  RPGM 

The impact of coverage over the average energy 
dissipation shows minor difference as shown in Fig 
6 (a)–(c). 

 

(a) 

(b) 

(c) 
Fig 6:  Impact of Coverage on Average Energy 

Dissipation 
(a) RWM (b) RWP (c) RPGM 

As the beacon node percentage varies over the 
deployment area, the average energy dissipated 
indicates that more nodes are localized for varying 
transmission range. The energy spent in proposed 
localization is less due to state sequence compared 
to continuous updating in the existing work. It can 
be seen that the RPGM model consumes less energy 
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when compared to other models because the 
members follow the leader nodes to be localized. 

 
4.1.3 Effect of varying the Speed  
The effect of varying speed over the estimation error 
is shown in Fig 7 (a)–(c).  

 
(a) 

 

 
(b) 

 

 
(c) 

Fig 7: Impact of Speed on Estimation Error 
(a) RWM (b)  RWP (c)  RPGM 

All the nodes in the network have communication 
range of 150m. As the speed increases, the 
localization error progressively decreases.The 

estimation error obtained for HMM RWM is lesser 
than the particle filter with various moving speeds. 
RWP pauses for few seconds and chooses the speed 
to move to the next destination. RPGM behaves 
differently from the other two models by choosing 
the appropriate angle and speed deviation, which 
controls the velocity of group members from that of 
the leader. 
Variation of speed over the control overhead is 
shown in Fig 8 (a)–(c). The increase in the speed 
gradually decreases the control overhead. RWM and 
RWP have lower overhead when compared to 
RPGM. RPGM follows the speed and angle 
deviation so that the overhead was slightly high at 
initial speed of 2m/s. 
 

 
(a) 

 

 
(b) 

The performance of average energy dissipation for 
varying speed is shown in Fig 9 (a)–(c). The energy 
is gradually reduced due to the increase in speed for 
RWM. In all the three mobility models, the energy 
drops down at higher speed. For RWP and RPGM, 
since it pauses for a few seconds to take decision for 
the next movement to reach the destination, it 
spends more energy than RWM. 
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(c) 

Fig 8:  Impact of Speed on Control Overhead 
(a) RWM (b)  RWP (c)  RPGM 

 
 

 
(a) 

 

 
(b) 

The estimation error is calculated as the difference 
between the most probable estimated value and the 
actual location. The χ² - test is used to test the 
statistical significance of difference between 
estimated and actual location;  the data collected for 
multiple runs claims a 98 % level of confidence for 
RWM and RWP, while 99 % for RPGM 
communicating about the fact that networks with 

higher anchor ratio, higher speed produce better 
estimations. 
 

 
(c) 

Fig 9:  Impact of Speed on Average Energy 
Dissipation 

(a) RWM (b)  RWP (c)  RPGM 

Summarizing the above observations of the 
proposed work, the estimation error reduces and 
converges faster for varying node density, various 
transmission ranges and varying speed for different 
mobility model. These observations show that the 
state sequence estimates for location of non-anchor 
nodes are more accurate and converge faster by 
minimizing the traffic rate and reducing the power 
dissipation using various mobility models. 

5 Conclusion and Future Work 

The knowledge of physical location of mobile nodes 
is more useful to geographical routing in the 
wireless sensor network. Extensive literature is 
available for indoor sensor network whereas only 
minimal studies focused on outdoor. The current 
work helps to obtain better location accuracy in the 
outdoor environment through RSS measurement by 
two-ray propagation model using HMM. The 
proposed approach exploits the RSS measurements 
to estimate the position of a mobile node. The 
network connectivity is controlled by varying the 
transmission range; hence the traffic is avoided by 
the state sequence estimation; longer the sequence, 
better the location accuracy. In addition, through a 
comparative simulation study of various mobility 
models it has been observed that RPGM improves 
the location accuracy. The advantage of the 
proposed work is rapid convergence of the state 
sequence, which directly helps to reduce the traffic 
and subsequently consumes low power 
consumption. This work can be extended for 
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uniform and non-uniform deployment of the nodes 
using multiple sensory data with other propagation 
model. 
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